The supported models currently all come from tidypredict right now.
Supported models
The following models are supported by tidypredict
:
- Linear Regression -
lm()
- Generalized Linear model -
glm()
- Random Forest models -
randomForest::randomForest()
- Random Forest models, via
ranger
-ranger::ranger()
- MARS models -
earth::earth()
- XGBoost models -
xgboost::xgb.Booster.complete()
- Cubist models -
Cubist::cubist()
- Tree models, via
partykit
-partykit::ctree()
parsnip
tidypredict
supports models fitted via the
parsnip
interface. The ones confirmed currently work in
tidypredict
are:
-
lm()
-parsnip
:linear_reg()
with “lm” as the engine. -
randomForest::randomForest()
-parsnip
:rand_forest()
with “randomForest” as the engine. -
ranger::ranger()
-parsnip
:rand_forest()
with “ranger” as the engine. -
earth::earth()
-parsnip
:mars()
with “earth” as the engine.
Recipes steps
The following 46 recipes steps are supported
step_adasyn()
step_bin2factor()
step_BoxCox()
step_bsmote()
step_center()
step_corr()
step_discretize()
step_downsample()
step_dummy()
step_filter_missing()
step_impute_mean()
step_impute_median()
step_impute_mode()
step_indicate_na()
step_intercept()
step_inverse()
step_lag()
step_lencode_bayes()
step_lencode_glm()
step_lencode_mixed()
step_lincomb()
step_log()
step_mutate()
step_nearmiss()
step_normalize()
step_novel()
step_nzv()
step_other()
step_pca()
step_pca_sparse()
step_pca_sparse_bayes()
step_pca_truncated()
step_range()
step_ratio()
step_rename()
step_rm()
step_rose()
step_scale()
step_select()
step_smote()
step_smotenc()
step_sqrt()
step_tomek()
step_unknown()
step_upsample()
step_zv()